Tracking the complex flow of chromosome rearrangements from the Hominoidea Ancestor to extant Hylobates and Nomascus Gibbons by high-resolution synteny mapping.

نویسندگان

  • Doriana Misceo
  • Oronzo Capozzi
  • Roberta Roberto
  • Maria P Dell'oglio
  • Mariano Rocchi
  • Roscoe Stanyon
  • Nicoletta Archidiacono
چکیده

In this study we characterized the extension, reciprocal arrangement, and orientation of syntenic chromosomal segments in the lar gibbon (Hylobates lar, HLA) by hybridization of a panel of approximately 1000 human BAC clones. Each lar gibbon rearrangement was defined by a splitting BAC clone or by two overlapping clones flanking the breakpoint. A reconstruction of the synteny arrangement of the last common ancestor of all living lesser apes was made by combining these data with previous results in Nomascus leucogenys, Hoolock hoolock, and Symphalangus syndactylus. The definition of the ancestral synteny organization facilitated tracking the cascade of chromosomal changes from the Hominoidea ancestor to the present day karyotype of Hylobates and Nomascus. Each chromosomal rearrangement could be placed within an approximate phylogenetic and temporal framework. We identified 12 lar-specific rearrangements and five previously undescribed rearrangements that occurred in the Hylobatidae ancestor. The majority of the chromosomal differences between lar gibbons and humans are due to rearrangements that occurred in the Hylobatidae ancestor (38 events), consistent with the hypothesis that the genus Hylobates is the most recently evolved lesser ape genus. The rates of rearrangements in gibbons are 10 to 20 times higher than the mammalian default rate. Segmental duplication may be a driving force in gibbon chromosome evolution, because a consistent number of rearrangements involves pericentromeric regions (10 events) and centromere inactivation (seven events). Both phenomena can be reasonably supposed to have strongly contributed to the euchromatic dispersal of segmental duplications typical of pericentromeric regions. This hypothesis can be more fully tested when the sequence of this gibbon species becomes available. The detailed synteny map provided here will, in turn, substantially facilitate sequence assembly efforts.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A High-Resolution Map of Synteny Disruptions in Gibbon and Human Genomes

Gibbons are part of the same superfamily (Hominoidea) as humans and great apes, but their karyotype has diverged faster from the common hominoid ancestor. At least 24 major chromosome rearrangements are required to convert the presumed ancestral karyotype of gibbons into that of the hominoid ancestor. Up to 28 additional rearrangements distinguish the various living species from the common gibb...

متن کامل

The Mysteries of Chromosome Evolution in Gibbons: Methylation Is a Prime Suspect

Dobzhansky and Sturtevant provided the first view of the molecular basis of species identity in their 1938 seminal study classifying the chromosome rearrangements that distinguish two Drosophila species [1]. Decades of study of genome architecture from an evolutionary perspective then followed, enriching our knowledge of developmental genetics, gene regulation, human genetic disorders, and canc...

متن کامل

ClaSS MaMalIa Order PrIMateS SuBOrder HaPlOrrHINI ParvOrder CatarrHINI SuPerfaMIly HOMINOIdea faMIly HylOBatIdae

Males and females exhibit distinct color differentiation in many species, (e.g. Nomascus and Hoolock genera) although some show significant color variation unrelated to sex (e.g. the Hylobates genus). Aside from coloration, gibbon species can be distinguished by their vocalizations; mated couples in many species sing duets to display the strength of their pair bond and communicate territory ran...

متن کامل

Evolutionary Breakpoints in the Gibbon Suggest Association between Cytosine Methylation and Karyotype Evolution

Gibbon species have accumulated an unusually high number of chromosomal changes since diverging from the common hominoid ancestor 15-18 million years ago. The cause of this increased rate of chromosomal rearrangements is not known, nor is it known if genome architecture has a role. To address this question, we analyzed sequences spanning 57 breaks of synteny between northern white-cheeked gibbo...

متن کامل

A complete species-level phylogeny of the Hylobatidae based on mitochondrial ND3-ND4 gene sequences.

The Hylobatidae (gibbons) are among the most endangered primates and their evolutionary history and systematics remain largely unresolved. We have investigated the species-level phylogenetic relationships among hylobatids using 1257 bases representing all species and an expanded data set of up to 2243 bases for select species from the mitochondrial ND3-ND4 region. Sequences were obtained from 3...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genome research

دوره 18 9  شماره 

صفحات  -

تاریخ انتشار 2008